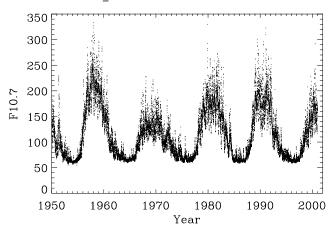
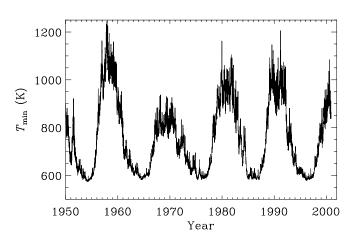
Data System for Living With A Star

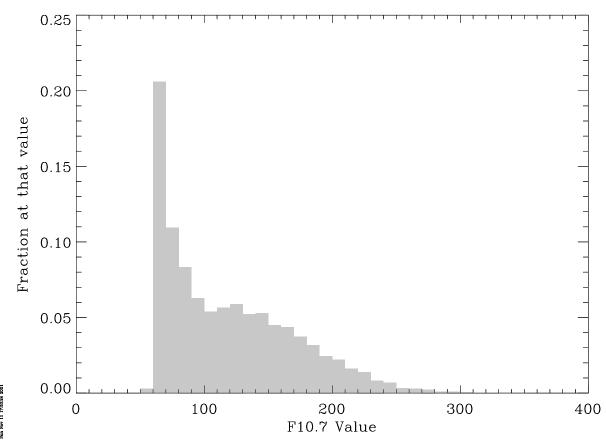

W. Dean Pesnell
Nomad Research, Inc. and
Goddard Space Flight Center


Outline

- What data are needed?
- Format of the database
- Why database software?
- What data should be served to each user?

Solar Activity and the Upper Atmosphere

Variation of solar activity (measured by F10.7) is a major contributor to the variability of the upper atmosphere. Continuous global coverage is necessary to improve our models of this region.



Living With a Star, Data Systems Panel

Solar Activity and the Upper Atmosphere

There will always be poor sampling of high levels of solar activity, even in a perfect system.

Living With a Star, Data Systems Panel

Needed Data Sets

- Altitude profiles of *T* and *N* (ion & neutral)
 - Response to changes in solar activity, solar wind, and the magnetosphere
 - Outflows to magnetosphere
 - Instabilities leading to scintillations
 - Assess the response to changes in minor gases
 (H and CO₂)
- Drivers of the profiles

Data from LWS

- Images, time series, and inverted data
 - All are used in atmospheric sampling
 - Inverted data can be limb or nadir soundings
- Correlation of datasets is valuable
- Assimilated datasets are a longterm goal

Inverted (Limb) Data

- TIMED/SABER (IR radiance $\rightarrow T[P]$, comp.)
 - Produces 30–40 datasets from 10 IR channels
 - Requires a great deal of analysis
 - First guess was 36 hours to invert a day's data
 - Now at 8–12 hours
 - Uses the NCEP assimilated data, UARS climatologies, solar flux models
 - Sampling limited by viewing geometry
 - If interpolated onto fixed grid, you miss the magnetospheric input

Assimilated Data

- Not just models, a data product
- Can provide profiles if single altitude is measured
- Several techniques, one common in weather/climate work
 - Ingests data for a period of time and calculates a model on a pre-determined grid at uniform timesteps
 - "Interpolates" non-uniformly sampled data
 - Used by forecasters to initialize their models

Format of Database

- Wide-Area Archive
 - Multiple sites, possibly redundant
- Large catalog
 - Use a database program to organize, not a directory structure
 - Physical location of data becomes unimportant
- Accurate orbital/attitude data must be readily available
- Heuristic metadata

Database Software

- Anyone can write search software
- Bring in the experts
 - Free software exists
 - Speed is always a problem
 - Different levels of searching
 - Updating the pointers takes time, reduces access

Heuristic Metadata

- Metadata need not be static
 - Successful links should be accumulated in the catalog
- Examples of using a database program
 - Introducing metadata into "discovered" datasets
 - Upgrade the metadata of archived datasets
 - Updating takes place as new data is ingested and successes are noted by trusted users

Data Service

- Does it make sense to serve all data to all people?
- Can subsets be provided to a general class of users, with more depth to experienced users.
 - Why provide msec sampling to someone who needs hour-averaged data? (DEUA & AEUA)
- Definition of levels for ease of interpretation
 - Virtual levels are available

Levels

- EOS defines levels of data
 - Level 0: Raw data
 - Level 1: Raw data with meaning
 - Level 2: Useful to an experienced user
 - Level 3: Useful to a general user
- LWS must address how science-valueadded data is reduced and archived